optimum designing of forging preform die for the h-shaped parts using backward deformation method and neural networks algorithm
نویسندگان
چکیده
in a closed die forging process, it is impossible to form complex shapes in one stage, and thus it becomes necessary to use preform dies. in the present study, backward deformation method and fe simulation via abaqus software has been used in order to design preform die of the h-shaped parts. in the backward deformation method, the final shape of the part is considered as a starting point and using a specific method, a plastic returning path is predicted. afterwards, using fe results obtained by simulation of the forging process, an artificial neural network is designed to predict the material behavior under various conditions and for different kinds of preform to select optimum preform dies.
منابع مشابه
Optimum Designing of Forging Preform Die for the H-shaped Parts Using Backward Deformation Method and Neural Networks Algorithm
In a closed die forging process, it is impossible to form complex shapes in one stage, and thus it becomes necessary to use preform dies. In the present study, Backward Deformation Method and FE simulation via ABAQUS software has been used in order to design preform die of the H-shaped parts. In the Backward Deformation Method, the final shape of the part is considered as a starting point and u...
متن کاملOptimum Designing of Forging Preform Die for the H-shaped Parts Using Backward Deformation Method and Neural Networks Algorithm
In a closed die forging process, it is impossible to form complex shapes in one stage, and thus it becomes necessary to use preform dies. In the present study, Backward Deformation Method and FE simulation via ABAQUS software has been used in order to design preform die of the H-shaped parts. In the Backward Deformation Method, the final shape of the part is considered as a starting point and u...
متن کاملOptimization of Preform in Close Die Forging by Combination Of Neural Network and Genetic Algorithm
In this essay, a combination of neural network and genetic algorithm has been studied for optimization of the preform in close die forging. Finite Volume Method (FVM) is used as a simulation tool for forging processes. The simulation results have used in the neural network and the genetic algorithm has been employed to optimize the forging force. The neural network was used in three stages for ...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Prediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods
Static deformation modulus is recognized as one of the most important parameters governing the behavior of rock masses. Predictive models for the mechanical properties of rock masses have been used in rock engineering because direct measurement of the properties is difficult due to time and cost constraints. In this method the deformation modulus is estimated indirectly from classification syst...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
journal of modern processes in manufacturing and productionناشر: islamic azad univesity, najafabad branch
ISSN
دوره 3
شماره 3 2014
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023